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Abstract

Political science studies commonly uses panel data. In particular, many of these

studies involve the analysis of a truncated dependent variable, such as aggregate-level

voter turnout or a party’s vote share. Unfortunately, panel regression, which is the

standard method of analyzing panel data, contains three methodological problems:

boundary violations, parameter estimation, and model specification. These issues

raise concerns about the panel regression method’s validity. In this article, I explain

the nature of these problems and propose three models to solve boundary violations

by applying constrained optimization in the least squares and maximum likelihood

paradigm. Major findings indicate that the current method is sensitive to different

centering methods and tends to generate false significance results. Throughout a

comparative study in the admissibility of parameter estimates, I demonstrate how

the three revised models can conditionally or fully eliminate boundary violations.

Methodological advice is also provided regarding when and how the new methods

should be employed.

Keywords: Panel Regression, Truncated Normal Distribution, Constrained Opti-

mization, Least Squares, Maximum Likelihood



1 Introduction

Panel (or time-series-cross-section, TSCS hereafter) data is commonly used in polit-

ical science studies (Wawro, 2002; Beck and Katz, 1995; 2007; Beck, 2007; Adolph,

Butler, and Wilson, 2005). In particular, many of these studies involve the analysis of

a truncated dependent variable (Gomez, Hansford, and Krause, 2007; Knack, 1995;

Baek, 2009; Boyne et al., 2009). In American politics, the study of political partici-

pation is associated with aggregate-level (state or county) data about voter turnout

in multiple temporal units, such as Current Population Survey (CPS) (Sides, Schick-

ler, and Citrin, 2008). In political economy studies, the sovereign bond rating uses

the data from a limited-point scale across different countries in multiple years from

S&P and Moody’s (Biglaiser, 2007). In world politics, for the past two centuries, the

cross-national data of military spending has been measured as a percentage of GDP

in the Correlates of War Project (COW) (Fordham and Walker, 2005). In compara-

tive politics, research on a party’s vote share considers electoral datasets, such as the

Democratic Electoral Systems Around the World dataset (DESAW) (Golder, 2005).

All of the aforementioned studies apply data that simultaneously possess spatial and

temporal characteristics. The target of investigation is always related to a dependent

variable that has boundary restrictions.1

The standard method of analyzing panel data is panel data regression (Greene,

2008: 180-213) in which the within- and between-groups estimators are applied to the

fixed-effects or random-effects model, such as the xtreg command in Stata (McCaffrey

1Most of the work does notify readers about the limited range of the dependent variable. How-
ever, few actually discuss the statistical property of the truncated random variable. In fact, many
convenient properties for a normal dependent variable do not hold in the truncated normal random
variable. For example, linear transformation of a truncated normal random variable does not gener-
ate a truncated normal random variable. It has been proven that the simple arithmetic operations,
such as additivity, do not work for a truncated normal random variable. See Horrace (2005a; 2005b).
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et al, 2010).2 The basic idea is to purge between-groups variance by subtracting the

group means from the pooled regression, and then the OLS method can be applied

to the within-groups regression. In other words, all the constants of the spatial

units, representing any omitted time-invariant variables, are canceled out after the de-

meaning operation (Wooldridge, 2005). Hence, the OLS estimator is BLUE (Baltagi,

2011:308). This approach is equivalent to the least squares dummy variable estimation

(LSDV), typically known as the fixed-effect model (FE) (Hsiao, 2003: 30-33). Its

advantage is avoiding working with the large covariate matrix if the number of spatial

units is plenty. This approach achieves its goal by utilizing the important property–

the equivalence of differencing and dummying (Wicharaya, 1995:200).

However, when the dependent variable is distributed as truncated normal, differ-

encing is not equivalent to dummying, since the time mean of the truncated depen-

dent variable is a biased estimate of the district-level location parameter (Hsiao, 2003:

243). This means that using the time mean to characterize the contextual effect of

the spatial units is not valid(Alan et al. 2011). Therefore, a methodological problem

occurs if we apply the panel data regression to analysis of a truncated dependent

variable.

An alternative approach is using the LSDV estimator instead. While LSDV does

not suffer from the above problem, the boundary restrictions of the dependent vari-

able still pose a challenge to the feasibility of the parameter estimates for the panel

data regression. In fact, neither the OLS (equivalent to LSDV when dummy vari-

ables are specified) nor the truncated regression model (such as truncreg) (Cong,

2000) can solve the boundary violations problem. If we seek nonlinear programming

techniques, such as constrained optimization (Bertsekas, 1996), to resolve this issue,

2We do not intend to discuss all estimators for panel regression. Rather, we want to employ
the simplest method to illuminate the basic problems. For more discussions on the strategies for
analysis of TSCS data, see Franzese (2005) and Franzese and Hays (2007).

2



the dimensionality of the parameter space then becomes a critical concern, given that

k regressors will engender (2k + 6) boundary constraints in a constrained optimiza-

tion problem (hereafter COP).3 If k is in the thousands, which is usually the case,

solving a COP becomes nearly impossible given the limited capacity of any personal

computer (Greene, 2008: 195).

The essential problem of the panel regression for a truncated dependent vari-

able is an out-of-bounds violation of the predicted value– a common scenario in

political science research that is seldom reported. For instance, in Benjamin Ford-

ham and Thomas Walker’s 2005 article published in International Studies Quarterly,

“Kantian Liberalism, Regime Type, and Military Resource Allocation: Do Democra-

cies SpendLess?”, the authors analyze three dependent variables, “Military spending

as a percentage of GDP,” “Military personnel as a percentage of population,” and

“Regression-based index of military allocation” using 14 panel regressions in total.

All three dependent variables have a lower bound value of 0. However, nine of the

14 models have negative predicted values and apparently suffer from boundary viola-

tions. While Fordham and Walker do identify this problem in a footnote (n.4, p.147),

they do not evaluate the admissibility of the parameter estimates, nor do they discuss

how we can meaningfully interpret those out-of-bounds results.4

The above discussion pinpoints the protracted problem regarding analysis of the

TSCS data of a truncated dependent variable via panel regression. First, the most sig-

nificant and pressing issue is boundary violations. Though the problem is widespread,

the political science community pays it little attention.5 Second, if we intend to solve

3For a truncated regression model with k covariates, we need to specify two constraints for the
maximal and minimal predicted values, (2k+2) constraints for the lower and upper limits for all beta
coefficients, and two for boundary constraints of the scale parameter. See supplementary document
A for detail (p.9).

4For similar cases, see the supplementary document A for detail (p.3).
5While scholars have been aware of this issue and some efforts were made in the field of econo-

metrics, for example Honorè(1992), we have not seen the emergence of a standardized approach that
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boundary violations with the within- and between-groups estimators by applying the

constrained optimization technique, the demeaning operation generates an invalid es-

timate of the within-groups variations. Third, if we use the LSDV estimator, the large

number of spatial units makes constrained optimization implementation impractical.

Consequently, despite the fact that the panel regression model has the same problem

as the linear probability model in terms of out-of-bounds violations (Aldrich and Nel-

son 1984:24), political scientists do not question the validity of the panel regression

as they would to the linear probability model.6

In this article, I propose a constrained optimization method to revise the panel

regression model. This method can be implemented under different settings in both

the least squares and maximum likelihood paradigms. In section two, I provide

a comprehensive discussion of the methodological problems of the panel regression

model. Next, I explain how to revise the panel regression given different scenarios:

(1) taking least squares or maximum likelihood assumptions (2) whether to adopt the

demeaning-bias correction. Then, I carry out a comparative study in the admissibility

of parameter estimates for the current panel regression and various revised models,

which is followed by the discussion and conclusion sections.

is widely accepted and available in statistical packages such as SPSS, SAS, or Stata.
6The usage of the logit or probit has already become the norm in social science when a binary

dependent variable is analyzed. However, almost no political science literature contains a truncated
regression model. Since binary and truncated dependent variables share the same nature of the
problem, truncated regression certainly receives much less attention than it should.
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2 The Panel Regression’s Methodological Prob-

lems

The methodological problems of the panel regression can be summarized and put

into three categories: boundary violations, parameter estimation, and model spec-

ification. Throughout this paper, I use the example in the first column of Table

1 from Thomas Hansford and Brad Gomez’s 2010 article “Estimating the Electoral

Effects of Voter Turnout” from American Political Science Review to discuss these

problems and present the results of the revised models. The dependent variable is

county-level democratic vote share in presidential elections from 1948 to 2000. The

independent variables include (1) Partisan composition, measured as the moving av-

erage of the Democratic vote share in the three most recent elections, (2) Turnout,

meaning voter turnout, (3) the two interaction terms Turnout×GOP Incumbent and

Turnout×Partisan composition, where GOP Incumbent is a dummy variable for a

presidential election in which the incumbent is Republican, and (4) 13 time dummy

variables indicating the temporal units from 1952 to 2000. The default category, rep-

resented by the constant, is the presidential election in 1948 in which the incumbent

is Democrat. The dataset, comprised of typical TSCS data with a sample size of

27401 that covers 1964 counties and 14 presidential elections, was compiled by the

two authors from various sources. We confine our discussion to the fixed-effect model.

2.1 Boundary Violations

The panel regression is specified as

yit − ȳi = (xit − x̄i) β + (eit − ēi) . (1)
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In Stata, the grandmeans ¯̄y and ¯̄x are added back to the regression model for estima-

tion of the intercept (Gould, 2011).

There are two kinds of boundary violations– empirical and theoretical out-of-

bounds predictions. Empirical boundary violation is defined as

(xit − x̄i) β̂ < a or (xit − x̄i) β̂ > b,

where a and b are the lower- and upper-bounds of the dependent variable yit. In

plain language, if the predicted value of any empirical observation falls outside the

permissible boundary, it is a case of empirical boundary violation.7

Theoretical boundary violation refers to the case in which an out-of-bounds pre-

dicted value occurs for any possible observation, given the covariate space defined by

the empirical data. For example, the range of the covariates Partisan composition

and Turnout are [10.14%,88.98%] and [20.37%,100%]. Given the beta estimates as

shown in Table 1, we can derive that the predicted value of democratic vote share

is 128.96% for a case in which Partisan composition = 88.98% and Turnout = 100%

in the 1964 presidential election if the incumbent is a Republican. In the same

way, the predicted vote share is −20.7% for a case in which Partisan composition =

10.14% and Turnout = 20.37% in the 1972 presidential election if the incumbent is

a Democrat. Both cases indicate theoretical boundary violations because the joint

presence of covariate values is logically possible, despite their empirical nonappear-

ance. The same problem can be demonstrated in less dramatic examples. For in-

stance, in the 1964 presidential election, if the incumbent is a Republican and given

7The dependent variable has different meanings if different demeaning operations are applied. If
yit is used without additional operations, yit denotes vote share and is bounded with 0 and 1. If
yit is demended by ȳi, yit − ȳi means within-groups deviations. If the grandmean is added back,
yit − ȳi + ¯̄y indicates within-groups variations plus a baseline vote share. That is how Stata reports
panel regression with a constant measure.
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that Partisan composition = 60% and Turnout = 60%, the predicted vote share is

108.22%. In the 1972 presidential election if the incumbent is a Democrat and given

that Partisan composition = 40% and Turnout = 40%, the predicted vote share is

-2.62%. Again, both cases are not outlier cases, and similar cases do exist in the

existing temporal domain, except for the GOP Incumbent variable. For the former

case, there are 37 cases in which both covariates deviate from 60% by a 1% margin

in all temporal units except ’52, ’84, and ’88. For the latter, there are seven cases in

which both covariates deviate from 40% by a 1% margin in ’56, ’76, ’88, ’98, and ’00.

Some scholars may argue that only empirical observations count, and we do not

have to consider those theoretical out-of-bounds cases. However, such an argument

contradicts the fundamental reasoning of statistical inference, that is, using a variable

to decontexualize a concept for universal comparison (Kellstedt and Whitten, 2009:

7-14). If the GOP Incumbent variable in 1964 could only be 0 in order to reflect

the historical truth, then all observations in our empirical data should be viewed as

idiosyncratic.8 Thus, statistical inference is not possible. For this reason, we should

consider the theoretical boundary violation as a sign of invalid parameter estimates.

2.2 Parameter Estimation

Parameter estimation differences in the least squares and maximum likelihood paradigms

are the formulation of the objective function. In the least squares paradigm, the ob-

jective function is simply the sum of squares of residuals. We can regard the boundary

restriction of the dependent variable as the linear constraints. Parameter estimation

8We are not opposed to interpreting a time dummy as a composite estimate of the time effect in
a given place. Thus, all the idiosyncratic effects have already been lumped into a single measure.
However, this does not point to the uniqueness of time dummies; rather, the maximum or minimum
of such measures reflect the greatest or least effects of the time factor that has ever occurred. Since
this has happened previously, we have no reason to rule out the possibility that it will happen again.
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can be specified as a quadratic programming problem (QP): (Vanderbei, 2008)

Minimize f (β) =
n∑
i=1

Ti∑
t=1

[(yit − ȳi)− (xit − x̄i) β]2

Subject to (xit − x̄i) β ≤ b

− (xit − x̄i) β ≤ −a,

where the number of the spatial and temporal units is n and Ti, and the parameter

space β ∈ Ωβ. We have not exactly specified what Ωβ should be. This is critical to

solve the above QP problem successfully. We will discuss this issue in section 3.

We can modify the objective function slightly by providing a distributional as-

sumption to the demeaned dependent variable (yit − ȳi) in (1)

(yit − ȳi) ∼ TN
[
(xit − x̄i) β, σ2; p1, q1

]
, (2)

Here the setup of the lower and upper limits, p1 and q1, are vital to a successful max-

imum likelihood estimation. Theoretically, p1 and q1 should be set to their greatest

and least possible values according to the available data information.

p1 = a−
(
¯̄y + tmin

σb
· σb
)

q1 = b−
(
¯̄y + tmax

σb
· σb
)
.

where σb is the between-groups deviation estimated by the untruncated normal as-

sumption, and tmin
σb

and tmax
σb

refer to the largest deviation of ȳi in the negative and

positive directions, respectively.
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Given this distributional assumption, the objection function can be specified as

Maximize logL ≡ −
n∑
i=1

Ti∑
t=1

Dit −
1

2σ2
[(yit − ȳi)− (xit − x̄i) β]2,

where Dit =
√

2πσ
[
Φ
(
p1−(xit−x̄i)β

σ

)
− Φ

(
q1−(xit−x̄i)β

σ

)]
. We must be aware that one

additional parameter σ is added in the above likelihood function, and the parameter

space σ ∈ Ωσ needs to be specified. The inequality constraints and the parameter

space β ∈ Ωβ remain the same.

From the perspective of the likelihood paradigm, the two objective functions above

are all problematic, since the panel regression is incorrectly specified in the first place.9

To see why this is so, we first assume that the dependent variable yit is distributed

as truncated normal

yit ∼ TN (µi, σ; a, b) ,

where µi is the district-level location parameter. The time mean of yit is

Et (yit) = µi −
σ
{

exp
[
− (b−µi)2

2σ2

]
− exp

[
− (a−µi)2

2σ2

]}
√

2π
[
Φ
(
b−µi
σ

)
− Φ

(
a−µi
σ

)] .

Unless b − µi = µi − a or (a, b) → (−∞,∞), the time mean Et (yit) (or noted as ȳi)

9In contemporary statistical science, the likelihood theory is a crucial paradigm of inference for
data analysis (Royall, 1997:xiii). It provides a unifying approach of statistical modeling to both
frequentists and Bayesians with the criterion of maximum likelihood (Azzalini, 1996). The rapid
development of political methodology in the last two decades has also witnessed the establishment
of the likelihood paradigm in the scientific study of politics (King, 1998). As a model of inference,
the fundamental assumption of the likelihood theory is the likelihood principle, which states that
“all evidence, which is obtained from an experiment, about an unknown quantity θ, is contained in
the likelihood function of θ for the given function.” (Berger and Wolpert,1984:vii) In other words,
given the fact that the likelihood function is defined by the probability density (or mass) function,
we must make a distributional assumption of the dependent variable to derive a likelihood function.
The plausibility of such a distributional assumption is therefore vital to the validity of the statistical
inference.
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is a biased estimate of µi (Johnson and Kotz, 1970: 81).10 If we intend to purge the

between-groups variation, we should subtract µi from yit. However, we mistakenly use

the time mean Et (yit) to estimate µi, and the differencing operation yit−Et (yit) fails

to generate the valid within-groups variation. This illustrates the common problem

for the previous panel regressions in (1) and (2).

If we want to specify a conceptually equivalent model as the panel regression,

we can use the individual-level dependent variable to estimate district-level location

parameters µi, and then perform the demeaning operation to derive the within-groups

regression.11 In this scenario, the dependent variable can be specified as

(yit − µ̂i) ∼ TN
(
x∗itβ, σ

2; p2, q2

)
,

where x∗it represents the covariate matrix that is fixed at the minimum after being

demeaned, and

p2 = a−
(
µ̂+ tmin

σµ̂i
· σµ̂i

)
q2 = b−

(
µ̂+ tmax

σµ̂i
· σµ̂i

)
.

Applying a maximum likelihood estimation,we can derive the objective function

as

Maximize logL ≡ −
n∑
i=1

Ti∑
t=1

{
Dit −

1

2σ2
[(yit − µ̂i)− xitβ]2

}
,

where Dit =
√

2πσ
[
Φ
(
p2−x∗itβ

σ

)
− Φ

(
q2−x∗itβ

σ

)]
. Since the demeaning operation is

10When b−µi = µi− a, the normal distribution is evenly truncated at both ends. When (a, b)→
(−∞,∞), the variable is not truncated at all. Both situations rarely occur when the dependent
variable is distributed as truncated normal.

11This involves a two-stage procedure. In the first stage, µ̂i is estimated by µit without covariates.
In the next stage, we take µ̂i as the district-level property and subtract it to derive complete within-
groups deviation.
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achieved with the maximum likelihood estimates of µ̂i, no demeaning on the covari-

ate matrix is necessary. However, we will apply the same demeaned specification for

the sake of comparability. In section 3, we will apply the technique of constrained

optimization to solve the three optimization problems given different parameter con-

straints.

2.3 Model Specification

Proper model specification is critical for the successful application of constrained

optimization to the panel regression. While the demeaning operation is easy to apply,

it generates some questions regarding interpretability, as well as logical soundness.

For the covariates that can vary independently at the individual level, the demeaning

operation experiences no problem, since the time mean represents the aggregate-level

measure, which reflects the characteristic of the spatial units across time. However,

when the covariates cannot vary independently, such as when they function as a time

dummy or have involvement with an interaction term, the demeaning operation is

problematic and unnecessary.

In Hansford and Gomez’s study, there are 13 time dummies, and their values after

demeaning operation range from -0.26 to 1. This scenario contradicts our intuition

because a time dummy is either 0 or 1. Mathematically, after being demeaned, a time

dummy should remain as 0 or 1 since

xdit − x̄di + ¯̄x = xdit −
1

T
− n

n · T

= xdit,

where the superscript d denotes a time dummy. And here, we assume the data

consists of balanced panels. Therefore, if time dummies have values other than 0 or
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1, it indicates a missing value problem. For instance, the time dummy Yr2000 has

a lowest value of -0.26 in the ’48 observation #1471, since there are only three cases

available in this county, including the case in 2000 (county id: #39075). On the other

hand, the time dummy Yr2000 has a positive value of 0.070 in the ’00 observation

#25095, since only the ’00 case is missing in this county (county id: #41049). Given

that the demeaning operation is unnecessary and the result is difficult to interpret,

we use the original data for the time dummies.

Another common issue in political studies is associated with interaction terms.

However, we often neglect the nonlinear nature of the interaction model, especially

where different centering methods are involved.12 If we center non-interaction vari-

ables before forming interaction terms, the regression result will be different from

centering all variables after interaction terms were formed. Suppose x3 = x1 × x2

and x1 and x2 are normally distributed, then the above case can be illustrated by the

following equations:

y = β
(1)
0 + (x1 − x̄1) β

(1)
1 + (x2 − x̄2) β

(1)
2 + (x1 − x̄1) (x2 − x̄2) β

(1)
3 (3)

= β
(2)
0 + (x1 − x̄1) β

(2)
1 + (x2 − x̄2) β

(2)
2 + (x1x2 − x1x2) β

(2)
3 . (4)

Apparently, β
(1)
i 6= β

(2)
i for i = 1, 2, 3, regardless of whether y is distributed as un-

truncated or truncated normal.

When applying constrained optimization to panel regression, we suggest applying

the fixed-at-minimum model if the regression includes dummy variables or interaction

terms. The reason is twofold: first, the value of time dummies in many observations

will approach zero as the temporal units increase, which will occasionally cause numer-

12We refer the centering methods to any model specification that involves linear transformation
of the regression model.
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ical problems; second, if we formulate the interaction term after fixing the composing

variables at the minimum, given that the range of all variables is in the positive do-

main, we can simplify the specification of boundary constraints by eliminating the

cases in which two negative composing variables result in a positive interaction term.

Centering interaction variables, on the other hand, would complicate the specifica-

tion of the admissible parameter space for β, and thus cause difficulty in parameter

estimation.

3 Solving Boundary Violations with Constrained

Optimization

Constrained Optimization is an important quantitative method in (non)linear pro-

gramming and numerical optimization. It has been widely applied in molecular bi-

ology, meteorology, physical oceanography, industrial management, and many engi-

neering fields (Bonnans et al.,2006: 5-10). The fundamental issue in a constrained op-

timization problem (COP) is to achieve the optimality under a given set of objective

functions and parameter constraints, including equality and inequality constraints.

When the objective function is linear, we refer to it as a “linear programming” prob-

lem. When the objective function is quadratic or higher order, we call it a “nonlinear

programming” problem.

Identification of the objective function is the first step in specifying a COP prob-

lem. We already completed this task in the previous section by specifying three ob-

jective functions under least squares and maximum likelihood paradigms. All three

objective functions are nonlinear. Next, we need to specify proper constraints to

achieve admissible parameter estimates that do not suffer from boundary violations.
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The basic set of the constraints for the three objective functions is defined by the

beta coefficient β̂m. We can generalize those constraints by

g1 = β0 + ŷmax
∼0 − b ≤ 0

g2 = a− β0 − ŷmin
∼0 ≤ 0

g3 = β0 − b ≤ 0

g4 = −β0 + a ≤ 0

...

g2m+3 = βm −
b− ŷmax

∼m
x∗max
m

≤ 0

g2m+4 = −βm +
a− ŷmin

∼m
x∗max
m

≤ 0

For maximum likelihood estimation, we need to add two more constraints on the scale

parameter σ as

g2m+5 = σ − b+ a ≤ 0

g2m+6 = −σ + κ ≤ 0.

The above specification is deduced from a regression model that fixes all the variables

at the minimum level with the exception of the constant covariate. After being fixed,

the covariate matrix is expressed with an asterisk sign x∗. The predicted value of

the dependent variable is bounded within the lower and upper limits, a and b. The

eligible parameter space of the beta coefficient βm can be derived by (1) fixing the

independent variables of interest at the minimum, while finding the greatest and

least predicted values, ŷmax
∼m and ŷmin

∼m, (2) varying the covariate value of interest from

minimum to maximum to derive its largest or least possible contribution, b and a,

14



Figure 1: Boundary Constraints of βm

and (3) dividing the largest and least possible contribution by the maximum range

x∗max
1 − x∗min

1 , where x∗min
1 = 0.13 Figure 1 illustrates this procedure as the above

describes.

The first two constraints define the upper and lower bounds of the predicted value

for the dependent variable. The third and four constraints specify the range of the

constant, which refers to the level of the dependent variable when all the covariates

are held at the minimum; and apparently, the upper and lower limits are the same

as the dependent variable. For the rest of 2m equations, constraints are about the

admissible parameter space of beta coefficients from x1 to xm. The two additional

constraints specify the maximum and minimum value of the scale parameter. The

maximum is set to the full range because the distribution will deviate from truncated

normal and approach uniform distribution when σ � |b− a|. The minimum is set to

an arbitrary small number κ to prevent negative variance from occurring.

We apply the sequential quadratic programming (SQP) algorithm to solve a COP

13If the interaction terms are fixed at the minimum at the same time as other variables, we will
not be able to derive x∗1 × x∗2 = (x1 × x2)

∗
, as the previous discussion about (3) and (4) explains.
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problem and derive parameter estimates. The idea of the SQP algorithm is to break

down a complicated COP problem into a series of osculating quadratic problems

(OQP) (Gilbert, 2009). Given that quadratic problems are much easier to solve,

we can approach the optimal solution by solving the subproblems until we reach

convergence throughout a sequence of iterations (Powell, 1978). To execute the SQP

algorithm, we need to have information about the constraint vector, the first derivative

matrix of the constraint vector, the gradient vector of the objective function, and the

hessian matrix of the Lagrangian function. Beginning with giving the initial value,14

we will derive a new set of solutions by updating those four matrices, and then

we will evaluate whether the convergence is achieved by checking the Karush-Kuhn-

Tucker conditions (Kuhn and Tucker, 1951), which are necessary terms for an optimal

solution to exist in nonlinear programming. If the solution reaches convergence, we

stop the iteration process and report the optimal solution.15 If the maximum number

of iterations runs out, we check the admissibility of the best available solution and

report it.16 If no admissible solution is available, then we report the estimation as

failed.

Supplementary documents A and B explain the details of model specification,

mathematical exposition, and simulation findings. According to previous research

presented in these documents, applying constrained optimization to the modified

truncated regression model exhibits unconditional superiority in terms of eliminating

boundary violations and deriving the best admissible likelihood measure. Comparing

the OLS method and the current truncated regression model, the regression model

that incorporates constrained optimization can always find an admissible solution and

14The initial parameter values are set by the solution of the current panel regression.
15We adopt the SQP algorithm suggested by Bonnans et al. (2006: 257).
16Due to the large sample size, we reduce the maximum number of iterations to 31. The tolerance

value applied to check the KKT conditions is set to 10−4. The step-size parameter is set to τ = 50.
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effectively solves the out-of-bound violations, regardless of how they are empirically

or theoretically defined.

4 Applying Constrained Optimization to the Panel

Regression

In this section, we apply constrained optimization to the panel regression by repli-

cating Hansford and Gomez’s (2010) model as mentioned at the beginning of section

2. Five different models that use various settings will be presented. Each model

has different assumptions in model specification or parameter estimation, or both.

Model I and Model II differ in the centering methods in model specification, while

they share the least-squares objective function. Additionally, neither model applies

constrained optimization in parameter estimation. Model II and III adopt the same

model specification, but they differ in whether or not to apply constrained optimiza-

tion. Model III and IV both apply constrained optimization, but they differ in the

specification of least-squares or maximum likelihood objective functions. Model IV

and V share all the assumptions in parameter estimation, but they differ in whether

to correct the demeaning bias in model specification. Table 1 sums up the similarities

and differences for the five models’ assumptions.

Model I is the original model in which we report all beta coefficients, including

the time dummies. We replicate this model using the xtreg command in the Stata

environment. The result is presented in Table 2, and we regard this as the base

model, since Stata’s xtreg command is one of the most widely used methods for panel

regression. Due to the nature of the large sample size, all of the beta coefficients

are statistically significant at the 0.01 level. Most of the beta coefficients are nearly

17



zero or negative, except Partisan composition, Turnout×GOP Incumbent, Yr64, and

Yr96, and the constant.

Model II adopts a different specification by fixing all the covariates at the minimum

level. In comparing the results of Model I and II, while we expect differences related

to the constant and the interaction terms because the model specification changes,

the actual difference is far greater than expected. Not only do three of the four

main explanatory variables have significant differences, 7 of 13 time dummies also

have a different estimate by at least a 3% margin. Moreover, two beta coefficients,

Turnout×GOP Incumbent and Yr60, now become insignificant. We reach the same

conclusion: different centering specification significantly alters the panel regression

results if the model specification involves interaction terms.

Thus far, we have not applied constrained optimization to the panel regression.

In the next three models, we incorporate this nonlinear programming technique un-

der different statistical settings. The first is Model III (LSCO), as reported in Table

3, in which we specify a least squares objective function without any distributional

assumption. The model specification is the same as Model II, fixing covariates at

the minimum, except that the constant is not comparable given different demeaning

operations. We intend to compare Model III with Model II to see how they differ

if constrained optimization is applied. The results indicate that the four main beta

coefficients have substantial differences, while the time dummies are relatively stable.

Specifically, Partisan composition drops .212% from .799% to .587%, and Turnout,

Turnout×GOP Incumbent, and Turnout×Partisan composition all have different re-

sults of significance.

Model IV (MLCO1) is distinct from Model III when taking the distributional as-

sumption into consideration and using the maximum likelihood estimation to form

the objective function. The demeaning operation assumes an untruncated normal
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distribution to the dependent variable. While both models apply constrained opti-

mization, we expect some differences, since the objective function and the parameter

set are different. As Table 3 makes evident, the estimated beta coefficients are sig-

nificantly different. The major difference is not simply the magnitude, but also the

level of significance, as well as the sign. For instance, the small change of the beta

coefficient is in the Turnout×GOP Incumbent, where the difference is 0.012 when

its coefficient is increased from a significant -.031 to insignificant -.019. Considering

that the magnitude of the interaction term varies from hundreds to thousands, the

0.012 change is actually quite significant.17 As for the sign of the beta coefficients,

2 of 18 change the sign. This striking difference illustrates the fact that the panel

regression under the least squares and maximum likelihood paradigm could generate

quite different results with the same model specification.

We further correct the district-level location parameter bias due to the demeaning

operation by assuming a truncated normal distribution. Model V (MLCO2) reports

the panel regression results with constrained optimization. Comparing Model V and

Model IV, their difference is very limited. None of the 18 estimated beta coefficients

have a noticeable difference in sign or magnitude, and all of the differences are under

the 1% margin. Apparently, the use of the biased estimate, the time mean, to evaluate

the district-level properties only causes a marginal difference.

In terms of the boundary violations, none of the five models generate empirical vio-

lations, due to the relatively stable statistics of democratic vote share. Unfortunately,

in a two-party system, such as in United States, this nice data property obscures the

out-of-bound problem that is common in other contexts, particularly within the scope

17We do not mean to evaluate the magnitude of contribution by multiplying an interaction term
with the margin of the beta coefficient’s change. Since the variation of interaction terms is not inde-
pendent of its composing variables, we need to incorporate information of other relevant covariates
and coefficients to evaluate the actual contribution.
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of cross-national research that covers a very fragmented to one-party system. How-

ever, considering theoretical boundary violations as Table 4 shows, the two panel

regressions without applying constrained optimization both suffer this problem at

different levels. For the original specification, there are 14 boundary violations, while

Model II has 37 violations. With regard to Model III, we cannot find an admissible

solution in the original setting; therefore, we introduce a rescaled parameter η that

reduces the between-groups variability by multiplying a fraction as follows:

p∗1 = a−
(
¯̄y + tmin

σb
· σb · η

)
q∗1 = b−

(
¯̄y + tmax

σb
· σb · η

)
,

where p∗1 and q∗1 are new lower and upper bounds for the demeaned dependent variable

(yit − ȳi). We start from 100% and decrease by 1% each time, and finally reach an

admissible solution at η = 60%. In this way, we derive a solution without theoretical

boundary violation, but on the condition that it only applies to those counties where

the average democratic vote share ranges from 26.48% to 63.67%, which numbers

95.57% in all 1964 counties.

At last, the two models that use maximum likelihood estimation successfully elim-

inate theoretical boundary violations. Their estimates are relatively stable, regardless

of whether the demeaning bias is corrected. Findings in both models are far more

conservative than the original panel regression, and only one of the four explanatory

variables (Partisan composition) has a significant relationship. Moreover, the stan-

dard error measures are also larger, and hence lead to smaller t values. These findings

indicate that, the current panel regression tends to generate lenient results and likely

to suffer from the problem of false significance.
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5 Discussions

The previous analysis can be summarized with the following findings: (1) Results of

panel regression are sensitive to different centering methods in model specification,

(2) Without applying constrained optimization, panel regression is likely to suffer

from theoretical boundary violations, (3) Application of constrained optimization in

panel regression greatly alters the results in the least squares, as well as maximum

likelihood paradigm, (4) Despite the fact that constrained optimization can solve the

boundary violation problem with a least-squares or maximum-likelihood estimation,

the former only gives a conditional solution, while the latter achieves a complete

solution, (5) Within the maximum likelihood paradigm, the demeaning bias only

causes a marginal difference in a panel regression, (6) In comparison to the panel

regression that applies constrained optimization, the current model tends to generate

false significance results.

The above findings raise some potential problems that could significantly compro-

mise the validity of political science research if the current panel regression method is

applied to an analysis of a truncated dependent variable. The first concern is empiri-

cal boundary violations. Under no circumstances is a regression result that generates

out-of-bound predicted value acceptable. Next, theoretical boundary violations must

be considered. While some people might insist that regression results only explain the

empirical data and do not extend to possible cases that do not appear in our sample,

this view greatly limits the scope to which our analysis could apply. Third, in order to

solve boundary violations with constrained optimization, different estimation meth-

ods must be into considered. The choice of least squares and maximum likelihood

could generate very different results in panel data analysis. Fourth, if we select the

least squares method, a full solution might not always be available, although we can
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always find a conditional solution that applies to a varying range of cases. On the

other hand, despite the fact that maximum likelihood estimation is more likely to

achieve a full solution, its results tend to be less significant.

I do not argue that constrained optimization has to be imposed to panel regres-

sion, but this article provides three different resolutions when empirical or theoretical

boundary violation occurs. Given the same model specification, my analysis suggests

that the current panel regression (Model II) and the maximum likelihood with cor-

rection of demeaning bias (Model V) can serve as the optimistic and conservative

results in hypothesis testing, respectively. If a significance finding appears in both

models, then the robustness of this finding is corroborated. However, if the results in

both models do not agree, we need to be careful in interpreting them, since different

results are associated with different methodological assumptions. Nevertheless, I do

recommend adopting constrained optimization whenever panel regression suffers from

empirical boundary violations, because their occurrence is illogical.

6 Conclusions

This article presents three methods under different scenarios with least squares or

maximum likelihood assumptions. All three methods can conditionally or fully solve

the boundary violations problem. The analysis indicates that the results of current

panel regression are not only subject to some methodological problems, but also

sensitive to different centering methods. By applying the technique of constrained

optimization, those methodological problems can be targeted and the best possible

solution can successfully be reached. I suggest a mandatory use in one of the three

methods when an empirical boundary violation occurs. The robustness of the re-

sult can be also checked by comparing the results from the current method and the
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maximum likelihood method that corrects demeaning bias.

While the application of constrained optimization can eliminate boundary viola-

tions, it costs more time and computing capacity to execute the revised methods,

especially with the maximum likelihood assumption. Given the scope of this article,

a systematic assessment is yet to be done with regard to different methods’s perfor-

mance under various conditions. We expect more future work in simulations, as well

as empirical studies to illuminate to what extent the current panel regression suffers

from boundary violations, and to what extent the revised models can successfully

eliminate these violations. By possessing this knowledge, scholars in this field can

provide more definite criteria to prevent political science research from reporting an

illogical out-of-bound finding.
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